Tensorium
|
Computes the contracted conformal Christoffel vector \( \tilde{\Gamma}^i \). More...
#include <BSSNTildeChristoffel.hpp>
Static Public Member Functions | |
static void | compute (const tensorium::Tensor< T, 2 > &gamma_tilde_inv, const tensorium::Tensor< T, 3 > &christoffel, tensorium::Vector< T > &tildeGamma) |
Computes \( \tilde{\Gamma}^i = \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} \). | |
Computes the contracted conformal Christoffel vector \( \tilde{\Gamma}^i \).
The BSSN formalism requires computing the vector:
\[ \tilde{\Gamma}^i = \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} \]
where:
This quantity is key in the evolution of the conformal connection functions in the BSSN system.
T | Type used for floating-point computations (usually double ) |
|
inlinestatic |
Computes \( \tilde{\Gamma}^i = \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} \).
This function contracts the conformal Christoffel symbols \( \tilde{\Gamma}^i_{jk} \) with the inverse conformal metric \( \tilde{\gamma}^{jk} \) to yield the vector:
\[ \tilde{\Gamma}^i = \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} \]
gamma_tilde_inv | A 3×3 tensor representing \( \tilde{\gamma}^{jk} \) |
christoffel | A 3×3×3 tensor containing the Christoffel symbols \( \tilde{\Gamma}^i_{jk} \) |
tildeGamma | Output vector of size 3, storing \( \tilde{\Gamma}^i \) |
std::invalid_argument | if tensor dimensions are incorrect |
References tensorium::Tensor< K, Rank >::resize(), and tensorium::Tensor< K, Rank >::shape().