Tensorium
|
Compute the conformal Christoffel symbols \( \tilde{\Gamma}^k_{ij} \). More...
#include <BSSNChristoffel.hpp>
Static Public Member Functions | |
static void | compute (const tensorium::Tensor< T, 2 > &gamma_tilde, const tensorium::Tensor< T, 3 > &dgamma_tilde, const tensorium::Tensor< T, 2 > &gamma_tilde_inv, tensorium::Tensor< T, 3 > &Christoffel) |
Compute the conformal Christoffel symbols \( \tilde{\Gamma}^k_{ij} \). | |
Compute the conformal Christoffel symbols \( \tilde{\Gamma}^k_{ij} \).
The conformal Christoffel symbols are computed from the inverse conformal metric \( \tilde{\gamma}^{kl} \) and the derivatives of the conformal metric \( \partial_m \tilde{\gamma}_{ij} \) using the formula:
\[ \tilde{\Gamma}^k_{ij} = \frac{1}{2} \tilde{\gamma}^{kl} \left( \partial_i \tilde{\gamma}_{jl} + \partial_j \tilde{\gamma}_{il} - \partial_l \tilde{\gamma}_{ij} \right) \]
|
inlinestatic |
Compute the conformal Christoffel symbols \( \tilde{\Gamma}^k_{ij} \).
gamma_tilde | 3×3 conformal metric \( \tilde{\gamma}_{ij} \) |
dgamma_tilde | 3×3×3 partial derivatives \( \partial_k \tilde{\gamma}_{ij} \) |
gamma_tilde_inv | 3×3 inverse metric \( \tilde{\gamma}^{ij} \) |
Christoffel | Output: \( \tilde{\Gamma}^k_{ij} \) |
References tensorium::Tensor< K, Rank >::resize(), and tensorium::Tensor< K, Rank >::shape().
Referenced by tensorium::compute_christoffel_3D().