Tensorium
|
Computes the trace-free conformal extrinsic curvature tensor \( \tilde{A}_{ij} \) in the BSSN formalism. More...
#include <BSSNAtildeTensor.hpp>
Public Types | |
using | Vec = tensorium::Vector<K> |
using | Mat = tensorium::Tensor<K, 2> |
Public Member Functions | |
tensorium::Tensor< K, 2 > | compute_Atilde_tensor (const tensorium::Tensor< K, 2 > &Kij, const tensorium::Tensor< K, 2 > &gamma_inv, const tensorium::Tensor< K, 2 > &gamma, K chi) |
Computes \( \tilde{A}_{ij} \) from \( K_{ij} \), \( \gamma_{ij} \), and \( \chi \). | |
Computes the trace-free conformal extrinsic curvature tensor \( \tilde{A}_{ij} \) in the BSSN formalism.
This tensor is defined as:
\[ \tilde{A}_{ij} = \chi \left( K_{ij} - \frac{1}{3} \gamma_{ij} K \right) \]
where:
using tensorium_RG::BSSNAtildeTensor< K >::Mat = tensorium::Tensor<K, 2> |
using tensorium_RG::BSSNAtildeTensor< K >::Vec = tensorium::Vector<K> |
|
inline |
Computes \( \tilde{A}_{ij} \) from \( K_{ij} \), \( \gamma_{ij} \), and \( \chi \).
\[ \tilde{A}_{ij} = \chi \left( K_{ij} - \frac{1}{3} \gamma_{ij} K \right), \quad K = \gamma^{ij} K_{ij} \]
Kij | Extrinsic curvature tensor \( K_{ij} \) |
gamma_inv | Inverse spatial metric \( \gamma^{ij} \) |
gamma | Spatial metric \( \gamma_{ij} \) |
chi | Conformal factor \( \chi \) |
Referenced by tensorium_RG::BSSN< T >::init_BSSN().