Tensorium
Loading...
Searching...
No Matches
tensorium_RG::BSSNAtildeTensor< K > Class Template Reference

Computes the trace-free conformal extrinsic curvature tensor \( \tilde{A}_{ij} \) in the BSSN formalism. More...

#include <BSSNAtildeTensor.hpp>

Collaboration diagram for tensorium_RG::BSSNAtildeTensor< K >:

Public Types

using Vec = tensorium::Vector<K>
 
using Mat = tensorium::Tensor<K, 2>
 

Public Member Functions

tensorium::Tensor< K, 2 > compute_Atilde_tensor (const tensorium::Tensor< K, 2 > &Kij, const tensorium::Tensor< K, 2 > &gamma_inv, const tensorium::Tensor< K, 2 > &gamma, K chi)
 Computes \( \tilde{A}_{ij} \) from \( K_{ij} \), \( \gamma_{ij} \), and \( \chi \).
 

Detailed Description

template<typename K>
class tensorium_RG::BSSNAtildeTensor< K >

Computes the trace-free conformal extrinsic curvature tensor \( \tilde{A}_{ij} \) in the BSSN formalism.

This tensor is defined as:

\[ \tilde{A}_{ij} = \chi \left( K_{ij} - \frac{1}{3} \gamma_{ij} K \right) \]

where:

  • \( K_{ij} \) is the extrinsic curvature tensor
  • \( K = \gamma^{ij} K_{ij} \) is its trace
  • \( \chi \) is the conformal factor
  • \( \gamma_{ij} \) is the spatial 3-metric

Member Typedef Documentation

◆ Mat

template<typename K >
using tensorium_RG::BSSNAtildeTensor< K >::Mat = tensorium::Tensor<K, 2>

◆ Vec

template<typename K >
using tensorium_RG::BSSNAtildeTensor< K >::Vec = tensorium::Vector<K>

Member Function Documentation

◆ compute_Atilde_tensor()

template<typename K >
tensorium::Tensor< K, 2 > tensorium_RG::BSSNAtildeTensor< K >::compute_Atilde_tensor ( const tensorium::Tensor< K, 2 > & Kij,
const tensorium::Tensor< K, 2 > & gamma_inv,
const tensorium::Tensor< K, 2 > & gamma,
K chi )
inline

Computes \( \tilde{A}_{ij} \) from \( K_{ij} \), \( \gamma_{ij} \), and \( \chi \).

\[ \tilde{A}_{ij} = \chi \left( K_{ij} - \frac{1}{3} \gamma_{ij} K \right), \quad K = \gamma^{ij} K_{ij} \]

Parameters
KijExtrinsic curvature tensor \( K_{ij} \)
gamma_invInverse spatial metric \( \gamma^{ij} \)
gammaSpatial metric \( \gamma_{ij} \)
chiConformal factor \( \chi \)
Returns
Trace-free conformal extrinsic curvature tensor \( \tilde{A}_{ij} \)

References chi, and gamma.

Referenced by tensorium_RG::BSSN< T >::init_BSSN().

Here is the caller graph for this function:

The documentation for this class was generated from the following file: