Tensorium
|
Placeholder for Gauss–Seidel iterative solver. More...
#include <LinearSolver.hpp>
Static Public Member Functions | |
static Vector< K > | solve (const Matrix< K > &A, const Vector< K > &b, K tol=1e-8, int max_iter=2000) |
Solve the system using Gauss–Seidel method. | |
Public Attributes | |
aligned_vector< K > | data |
Placeholder for Gauss–Seidel iterative solver.
The Gauss–Seidel method improves on Jacobi by using updated values as soon as they are available.
Update rule:
\[ x_i^{(k+1)} = \frac{1}{A_{ii}} \left(b_i - \sum_{j < i} A_{ij} x_j^{(k+1)} - \sum_{j > i} A_{ij} x_j^{(k)} \right) \]
K | Scalar type |
|
static |
Solve the system using Gauss–Seidel method.
A | Matrix \( A \in \mathbb{R}^{n \times n} \) |
b | Right-hand side vector |
tol | Convergence tolerance |
max_iter | Max iterations allowed |
aligned_vector<K> tensorium::solver::GaussSeidel< K >::data |